From benchmark to bedside: transfer learning from social media to patient-provider text messages for suicide risk prediction
Author:
Affiliation:
1. Department of Biomedical Informatics and Medical Education, University of Washington , Seattle, Washington, USA
2. Department of Psychiatry and Behavioral Sciences, University of Washington , Seattle, Washington, USA
Abstract
Funder
Garvey Institute for Brain Health Solutions Innovation
Informatics-Supported Authorship for Caring
Military Suicide Research Consortiu
Office of the Assistant Secretary of Defense for Health Affairs
Department of Defense
Military Suicide Research Consortium
Publisher
Oxford University Press (OUP)
Subject
Health Informatics
Link
https://academic.oup.com/jamia/article-pdf/30/6/1068/50374845/ocad062.pdf
Reference49 articles.
1. Trends in state suicide rates 1999-2016;Stone;MMWR Morb Mortal Wkly Rep,2018
2. Self-reported suicidal ideation as a predictor of suicidal behavior among outpatients with diagnoses of psychotic disorders;Simon;Psychiatr Serv,2019
3. Comparison of the safety planning intervention with follow-up vs usual care of suicidal patients treated in the emergency department;Stanley;JAMA Psychiatry,2018
4. Effect of augmenting standard care for military personnel with brief caring text messages for suicide prevention;Comtois;JAMA Psychiatry,2019
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Facial image analysis for automated suicide risk detection with deep neural networks;Artificial Intelligence Review;2024-09-03
2. Artificial Intelligence-based Suicide Prevention and Prediction: A Systematic Review (2019-2023);Information Fusion;2024-09
3. Assessing the Ability of a Large Language Model to Score Free-Text Medical Student Clinical Notes: Quantitative Study;JMIR Medical Education;2024-07-25
4. Applications of Large Language Models in the Field of Suicide Prevention: A Scoping Review (Preprint);2024-06-11
5. Assessing the ability of a large language model to score free text medical student notes (Preprint);2024-01-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3