ENRICHing medical imaging training sets enables more efficient machine learning

Author:

Chinn Erin1,Arora Rohit2,Arnaout Ramy23,Arnaout Rima1

Affiliation:

1. Department of Medicine, Division of Cardiology, Department of Radiology, Bakar Computational Health Sciences Institute, University of California, San Francisco , San Francisco, California, USA

2. Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center , Boston, Massachusetts, USA

3. Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts, USA

Abstract

Abstract Objective Deep learning (DL) has been applied in proofs of concept across biomedical imaging, including across modalities and medical specialties. Labeled data are critical to training and testing DL models, but human expert labelers are limited. In addition, DL traditionally requires copious training data, which is computationally expensive to process and iterate over. Consequently, it is useful to prioritize using those images that are most likely to improve a model’s performance, a practice known as instance selection. The challenge is determining how best to prioritize. It is natural to prefer straightforward, robust, quantitative metrics as the basis for prioritization for instance selection. However, in current practice, such metrics are not tailored to, and almost never used for, image datasets. Materials and Methods To address this problem, we introduce ENRICH—Eliminate Noise and Redundancy for Imaging Challenges—a customizable method that prioritizes images based on how much diversity each image adds to the training set. Results First, we show that medical datasets are special in that in general each image adds less diversity than in nonmedical datasets. Next, we demonstrate that ENRICH achieves nearly maximal performance on classification and segmentation tasks on several medical image datasets using only a fraction of the available images and without up-front data labeling. ENRICH outperforms random image selection, the negative control. Finally, we show that ENRICH can also be used to identify errors and outliers in imaging datasets. Conclusions ENRICH is a simple, computationally efficient method for prioritizing images for expert labeling and use in DL.

Funder

Department of Defense

National Heart, Lung, and Blood Institute

NIH

National Institutes of Allergy and Infectious Diseases

Gordon and Betty Moore Foundation

American Heart Association

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3