Transportability of bacterial infection prediction models for critically ill patients

Author:

Eickelberg Garrett1ORCID,Sanchez-Pinto Lazaro Nelson12ORCID,Kline Adrienne Sarah1,Luo Yuan1ORCID

Affiliation:

1. Department of Preventive Medicine (Health & Biomedical Informatics), Feinberg School of Medicine , Chicago, IL 60611, United States

2. Departments of Pediatrics (Critical Care) , Chicago, IL 60611, United States

Abstract

Abstract Objective Bacterial infections (BIs) are common, costly, and potentially life-threatening in critically ill patients. Patients with suspected BIs may require empiric multidrug antibiotic regimens and therefore potentially be exposed to prolonged and unnecessary antibiotics. We previously developed a BI risk model to augment practices and help shorten the duration of unnecessary antibiotics to improve patient outcomes. Here, we have performed a transportability assessment of this BI risk model in 2 tertiary intensive care unit (ICU) settings and a community ICU setting. We additionally explored how simple multisite learning techniques impacted model transportability. Methods Patients suspected of having a community-acquired BI were identified in 3 datasets: Medical Information Mart for Intensive Care III (MIMIC), Northwestern Medicine Tertiary (NM-T) ICUs, and NM “community-based” ICUs. ICU encounters from MIMIC and NM-T datasets were split into 70/30 train and test sets. Models developed on training data were evaluated against the NM-T and MIMIC test sets, as well as NM community validation data. Results During internal validations, models achieved AUROCs of 0.78 (MIMIC) and 0.81 (NM-T) and were well calibrated. In the external community ICU validation, the NM-T model had robust transportability (AUROC 0.81) while the MIMIC model transported less favorably (AUROC 0.74), likely due to case-mix differences. Multisite learning provided no significant discrimination benefit in internal validation studies but offered more stability during transport across all evaluation datasets. Discussion These results suggest that our BI risk models maintain predictive utility when transported to external cohorts. Conclusion Our findings highlight the importance of performing external model validation on myriad clinically relevant populations prior to implementation.

Funder

National Institutes of Health

National Library of Medicine

National Institute of Child Health & Human Development

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3