Deep neural networks ensemble for detecting medication mentions in tweets

Author:

Weissenbacher Davy1,Sarker Abeed1ORCID,Klein Ari1ORCID,O’Connor Karen1,Magge Arjun2,Gonzalez-Hernandez Graciela1

Affiliation:

1. Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA

Abstract

AbstractObjectiveTwitter posts are now recognized as an important source of patient-generated data, providing unique insights into population health. A fundamental step toward incorporating Twitter data in pharmacoepidemiologic research is to automatically recognize medication mentions in tweets. Given that lexical searches for medication names suffer from low recall due to misspellings or ambiguity with common words, we propose a more advanced method to recognize them.Materials and MethodsWe present Kusuri, an Ensemble Learning classifier able to identify tweets mentioning drug products and dietary supplements. Kusuri (薬, “medication” in Japanese) is composed of 2 modules: first, 4 different classifiers (lexicon based, spelling variant based, pattern based, and a weakly trained neural network) are applied in parallel to discover tweets potentially containing medication names; second, an ensemble of deep neural networks encoding morphological, semantic, and long-range dependencies of important words in the tweets makes the final decision.ResultsOn a class-balanced (50-50) corpus of 15 005 tweets, Kusuri demonstrated performances close to human annotators with an F1 score of 93.7%, the best score achieved thus far on this corpus. On a corpus made of all tweets posted by 112 Twitter users (98 959 tweets, with only 0.26% mentioning medications), Kusuri obtained an F1 score of 78.8%. To the best of our knowledge, Kusuri is the first system to achieve this score on such an extremely imbalanced dataset.ConclusionsThe system identifies tweets mentioning drug names with performance high enough to ensure its usefulness, and is ready to be integrated in pharmacovigilance, toxicovigilance, or more generally, public health pipelines that depend on medication name mentions.

Funder

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3