Biomedical and clinical English model packages for the Stanza Python NLP library

Author:

Zhang Yuhao1,Zhang Yuhui2,Qi Peng2,Manning Christopher D3,Langlotz Curtis P4

Affiliation:

1. Biomedical Informatics Training Program, Stanford University, Stanford, California, USA

2. Computer Science Department, Stanford University, Stanford, California, USA

3. Computer Science and Linguistics Departments, Stanford University, Stanford, California, USA

4. Department of Radiology, Stanford University, Stanford, California, USA

Abstract

Abstract Objective The study sought to develop and evaluate neural natural language processing (NLP) packages for the syntactic analysis and named entity recognition of biomedical and clinical English text. Materials and Methods We implement and train biomedical and clinical English NLP pipelines by extending the widely used Stanza library originally designed for general NLP tasks. Our models are trained with a mix of public datasets such as the CRAFT treebank as well as with a private corpus of radiology reports annotated with 5 radiology-domain entities. The resulting pipelines are fully based on neural networks, and are able to perform tokenization, part-of-speech tagging, lemmatization, dependency parsing, and named entity recognition for both biomedical and clinical text. We compare our systems against popular open-source NLP libraries such as CoreNLP and scispaCy, state-of-the-art models such as the BioBERT models, and winning systems from the BioNLP CRAFT shared task. Results For syntactic analysis, our systems achieve much better performance compared with the released scispaCy models and CoreNLP models retrained on the same treebanks, and are on par with the winning system from the CRAFT shared task. For NER, our systems substantially outperform scispaCy, and are better or on par with the state-of-the-art performance from BioBERT, while being much more computationally efficient. Conclusions We introduce biomedical and clinical NLP packages built for the Stanza library. These packages offer performance that is similar to the state of the art, and are also optimized for ease of use. To facilitate research, we make all our models publicly available. We also provide an online demonstration (http://stanza.run/bio).

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference46 articles.

1. Biomedical language processing: what’s beyond PubMed?;Hunter;Mol Cell,2006

2. Use of electronic health records in U.S. hospitals;Jha;N Engl J Med,2009

3. Literome: PubMed-scale genomic knowledge base in the cloud;Poon;Bioinformatics,2014

4. BioBERT: a pre-trained biomedical language representation model for biomedical text mining;Lee;Bioinformatics,2020

5. AskHERMES: An online question answering system for complex clinical questions;Cao;J Biomed Inform,2011

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3