Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data
Author:
Affiliation:
1. Janssen Research and Development, Raritan, NJ, USA
2. Department of Biomathematics, UCLA School of Medicine, CA, USA
3. Department of Medical Informatics, Erasmus University Medical Center, Rotterdam,The Netherlands
Abstract
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Health Informatics
Link
http://academic.oup.com/jamia/article-pdf/25/8/969/34150768/ocy032.pdf
Reference20 articles.
1. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting;Collins;BMC Med,2011
2. A systematic review finds prediction models for chronic kidney were poorly reported and often developed using inappropriate methods;Collins;J Clin Epidemiol,2013
3. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting;Collins;BMC Med Res Methodol,2014
4. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review;Goldstein;J Am Med Inform Assoc,2017
5. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement;Collins;BMC Med,2015
Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing readmission prediction models by integrating insights from home healthcare notes: Retrospective cohort study;International Journal of Nursing Studies;2024-10
2. Developing a machine learning model for predicting 30-day major adverse cardiac and cerebrovascular events in patients undergoing noncardiac surgery;2024-08-10
3. Unbiased identification of risk factors for invasive Escherichia coli disease using machine learning;BMC Infectious Diseases;2024-08-08
4. Development and validation of a patient-level model to predict dementia across a network of observational databases;BMC Medicine;2024-07-29
5. A multi-center study on the adaptability of a shared foundation model for electronic health records;npj Digital Medicine;2024-06-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3