Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions

Author:

Petit-Jean Thomas1ORCID,Gérardin Christel12ORCID,Berthelot Emmanuelle3ORCID,Chatellier Gilles14ORCID,Frank Marie5ORCID,Tannier Xavier6ORCID,Kempf Emmanuelle67ORCID,Bey Romain1ORCID

Affiliation:

1. Innovation and Data Unit, IT Department, Assistance Publique-Hôpitaux de Paris , Paris, 75012, France

2. Institut Pierre-Louis d’Epidémiologie et de Santé Publique, INSERM, Sorbonne Université , Paris, 75012, France

3. Department of Cardiology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris , Le Kremlin Bicêtre, 94270, France

4. Department of Medical Informatics, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Université de Paris , Paris, 75015, France

5. Department of Medical Informatics, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris , Le Kremlin-Bicêtre, 94270, France

6. Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé (LIMICS), INSERM, Université Sorbonne Paris Nord, Sorbonne Université , Paris, 75005, France

7. Department of Medical Oncology, Henri Mondor and Albert Chenevier Teaching Hospital, Assistance Publique-Hôpitaux de Paris , Créteil, 94000, France

Abstract

Abstract Objective To develop and validate a natural language processing (NLP) pipeline that detects 18 conditions in French clinical notes, including 16 comorbidities of the Charlson index, while exploring a collaborative and privacy-enhancing workflow. Materials and Methods The detection pipeline relied both on rule-based and machine learning algorithms, respectively, for named entity recognition and entity qualification, respectively. We used a large language model pre-trained on millions of clinical notes along with annotated clinical notes in the context of 3 cohort studies related to oncology, cardiology, and rheumatology. The overall workflow was conceived to foster collaboration between studies while respecting the privacy constraints of the data warehouse. We estimated the added values of the advanced technologies and of the collaborative setting. Results The pipeline reached macro-averaged F1-score positive predictive value, sensitivity, and specificity of 95.7 (95%CI 94.5-96.3), 95.4 (95%CI 94.0-96.3), 96.0 (95%CI 94.0-96.7), and 99.2 (95%CI 99.0-99.4), respectively. F1-scores were superior to those observed using alternative technologies or non-collaborative settings. The models were shared through a secured registry. Conclusions We demonstrated that a community of investigators working on a common clinical data warehouse could efficiently and securely collaborate to develop, validate and use sensitive artificial intelligence models. In particular, we provided an efficient and robust NLP pipeline that detects conditions mentioned in clinical notes.

Funder

AP-HP Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural language processing in dermatology: A systematic literature review and state of the art;Journal of the European Academy of Dermatology and Venereology;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3