The application of artificial intelligence and data integration in COVID-19 studies: a scoping review

Author:

Guo Yi12ORCID,Zhang Yahan3,Lyu Tianchen12,Prosperi Mattia4ORCID,Wang Fei5,Xu Hua6ORCID,Bian Jiang12ORCID

Affiliation:

1. Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA

2. Cancer Informatics Shared Resource, University of Florida Health Cancer Center, Gainesville, Florida, USA

3. Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida, USA

4. Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, Florida, USA

5. Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA

6. School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA

Abstract

Abstract Objective To summarize how artificial intelligence (AI) is being applied in COVID-19 research and determine whether these AI applications integrated heterogenous data from different sources for modeling. Materials and Methods We searched 2 major COVID-19 literature databases, the National Institutes of Health’s LitCovid and the World Health Organization’s COVID-19 database on March 9, 2021. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, 2 reviewers independently reviewed all the articles in 2 rounds of screening. Results In the 794 studies included in the final qualitative analysis, we identified 7 key COVID-19 research areas in which AI was applied, including disease forecasting, medical imaging-based diagnosis and prognosis, early detection and prognosis (non-imaging), drug repurposing and early drug discovery, social media data analysis, genomic, transcriptomic, and proteomic data analysis, and other COVID-19 research topics. We also found that there was a lack of heterogenous data integration in these AI applications. Discussion Risk factors relevant to COVID-19 outcomes exist in heterogeneous data sources, including electronic health records, surveillance systems, sociodemographic datasets, and many more. However, most AI applications in COVID-19 research adopted a single-sourced approach that could omit important risk factors and thus lead to biased algorithms. Integrating heterogeneous data for modeling will help realize the full potential of AI algorithms, improve precision, and reduce bias. Conclusion There is a lack of data integration in the AI applications in COVID-19 research and a need for a multilevel AI framework that supports the analysis of heterogeneous data from different sources.

Funder

National Institutes of Health

Centers for Disease Control and Prevention

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference151 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3