Expected clinical utility of automatable prediction models for improving palliative and end-of-life care outcomes: Toward routine decision analysis before implementation

Author:

Taseen Ryeyan123ORCID,Ethier Jean-François234

Affiliation:

1. Respiratory Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada

2. Centre Interdisciplinaire de Recherche en Informatique de la Santé, University of Sherbrooke, Sherbrooke, Quebec, Canada

3. Groupe de Recherche Interdisciplinaire en Informatique de la Santé, University of Sherbrooke, Sherbrooke, Quebec, Canada

4. General Internal Medicine Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada

Abstract

Abstract Objective The study sought to evaluate the expected clinical utility of automatable prediction models for increasing goals-of-care discussions (GOCDs) among hospitalized patients at the end of life (EOL). Materials and Methods We built a decision model from the perspective of clinicians who aim to increase GOCDs at the EOL using an automated alert system. The alternative strategies were 4 prediction models—3 random forest models and the Modified Hospital One-year Mortality Risk model—to generate alerts for patients at a high risk of 1-year mortality. They were trained on admissions from 2011 to 2016 (70 788 patients) and tested with admissions from 2017-2018 (16 490 patients). GOCDs occurring in usual care were measured with code status orders. We calculated the expected risk difference (beneficial outcomes with alerts minus beneficial outcomes without alerts among those at the EOL), the number needed to benefit (number of alerts needed to increase benefit over usual care by 1 outcome), and the net benefit (benefit minus cost) of each strategy. Results Models had a C-statistic between 0.79 and 0.86. A code status order occurred during 2599 of 3773 (69%) hospitalizations at the EOL. At a risk threshold corresponding to an alert prevalence of 10%, the expected risk difference ranged from 5.4% to 10.7% and the number needed to benefit ranged from 5.4 to 10.9 alerts. Using revealed preferences, only 2 models improved net benefit over usual care. A random forest model with diagnostic predictors had the highest expected value, including in sensitivity analyses. Discussion Prediction models with acceptable predictive validity differed meaningfully in their ability to improve over usual decision making. Conclusions An evaluation of clinical utility, such as by using decision curve analysis, is recommended after validating a prediction model because metrics of model predictiveness, such as the C-statistic, are not informative of clinical value.

Funder

Fonds de Recherche du Quebec—Santé and the Ministère de la Santé et des Services Sociaux

Fonds de Recherche du Quebec—Santé

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3