Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health

Author:

Murnane Elizabeth L1,Cosley Dan1,Chang Pamara2,Guha Shion1,Frank Ellen3,Gay Geri12,Matthews Mark1

Affiliation:

1. Information Science Department, Cornell University, Ithaca, NY, USA

2. Department of Communication, Cornell University, Ithaca, NY, USA

3. School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Objective To understand self-monitoring strategies used independently of clinical treatment by individuals with bipolar disorder (BD), in order to recommend technology design principles to support mental health management. Materials and Methods Participants with BD (N = 552) were recruited through the Depression and Bipolar Support Alliance, the International Bipolar Foundation, and WeSearchTogether.org to complete a survey of closed- and open-ended questions. In this study, we focus on descriptive results and qualitative analyses. Results Individuals reported primarily self-monitoring items related to their bipolar disorder (mood, sleep, finances, exercise, and social interactions), with an increasing trend towards the use of digital tracking methods observed. Most participants reported having positive experiences with technology-based tracking because it enables self-reflection and agency regarding health management and also enhances lines of communication with treatment teams. Reported challenges stem from poor usability or difficulty interpreting self-tracked data. Discussion Two major implications for technology-based self-monitoring emerged from our results. First, technologies can be designed to be more condition-oriented, intuitive, and proactive. Second, more automated forms of digital symptom tracking and intervention are desired, and our results suggest the feasibility of detecting and predicting emotional states from patterns of technology usage. However, we also uncovered tension points, namely that technology designed to support mental health can also be a disruptor. Conclusion This study provides increased understanding of self-monitoring practices, attitudes, and needs of individuals with bipolar disorder. This knowledge bears implications for clinical researchers and practitioners seeking insight into how individuals independently self-manage their condition as well as for researchers designing monitoring technologies to support mental health management.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting bipolar disorder on social media by post grouping and interpretable deep learning;Journal of Intelligent Information Systems;2024-09-11

2. A Novel Unsupervised Machine Learning Approach to Assess Postural Dynamics in Euthymic Bipolar Disorder;IEEE Journal of Biomedical and Health Informatics;2024-08

3. Factors that influence participation in physical activity for people with bipolar disorder: a synthesis of qualitative evidence;Cochrane Database of Systematic Reviews;2024-06-04

4. Rating Instruments for Mood Disorders in Clinical Practice;Clinical Textbook of Mood Disorders;2024-05-30

5. Use of ICTs during ongoing protracted socio-political disruptions;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3