High-throughput phenotyping with temporal sequences

Author:

Estiri Hossein123ORCID,Strasser Zachary H123ORCID,Murphy Shawn N123

Affiliation:

1. Harvard Medical School, Boston, Massachusetts, USA

2. Massachusetts General Hospital, Boston, Massachusetts, USA

3. Mass General Brigham, Boston, Massachusetts, USA

Abstract

Abstract Objective High-throughput electronic phenotyping algorithms can accelerate translational research using data from electronic health record (EHR) systems. The temporal information buried in EHRs is often underutilized in developing computational phenotypic definitions. This study aims to develop a high-throughput phenotyping method, leveraging temporal sequential patterns from EHRs. Materials and Methods We develop a representation mining algorithm to extract 5 classes of representations from EHR diagnosis and medication records: the aggregated vector of the records (aggregated vector representation), the standard sequential patterns (sequential pattern mining), the transitive sequential patterns (transitive sequential pattern mining), and 2 hybrid classes. Using EHR data on 10 phenotypes from the Mass General Brigham Biobank, we train and validate phenotyping algorithms. Results Phenotyping with temporal sequences resulted in a superior classification performance across all 10 phenotypes compared with the standard representations in electronic phenotyping. The high-throughput algorithm’s classification performance was superior or similar to the performance of previously published electronic phenotyping algorithms. We characterize and evaluate the top transitive sequences of diagnosis records paired with the records of risk factors, symptoms, complications, medications, or vaccinations. Discussion The proposed high-throughput phenotyping approach enables seamless discovery of sequential record combinations that may be difficult to assume from raw EHR data. Transitive sequences offer more accurate characterization of the phenotype, compared with its individual components, and reflect the actual lived experiences of the patients with that particular disease. Conclusion Sequential data representations provide a precise mechanism for incorporating raw EHR records into downstream machine learning. Our approach starts with user interpretability and works backward to the technology.

Funder

MSMR algorithm

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3