PMC-LLaMA: toward building open-source language models for medicine

Author:

Wu Chaoyi12,Lin Weixiong12,Zhang Xiaoman12,Zhang Ya12,Xie Weidi12,Wang Yanfeng12

Affiliation:

1. Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University , Shanghai, 200240, China

2. Shanghai AI Laboratory , Shanghai, 200232, China

Abstract

Abstract Objective Recently, large language models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering (QA) situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this article, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Materials and methods We adapt a general-purpose LLM toward the medical domain, involving data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive domain-specific instruction fine-tuning, encompassing medical QA, rationale for reasoning, and conversational dialogues with 202M tokens. Results While evaluating various public medical QA benchmarks and manual rating, our lightweight PMC-LLaMA, which consists of only 13B parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, and datasets for instruction tuning will be released to the research community. Discussion Our contributions are 3-fold: (1) we build up an open-source LLM toward the medical domain. We believe the proposed PMC-LLaMA model can promote further development of foundation models in medicine, serving as a medical trainable basic generative language backbone; (2) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component, demonstrating how different training data and model scales affect medical LLMs; (3) we contribute a large-scale, comprehensive dataset for instruction tuning. Conclusion In this article, we systematically investigate the process of building up an open-source medical-specific LLM, PMC-LLaMA.

Funder

National Key R&D Program of China

Science and Technology Commission of Shanghai Municipality

Higher Education Discipline Innovation Project 111

State Key Laboratory of UHD Video and Audio Production and Presentation.

Publisher

Oxford University Press (OUP)

Reference49 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3