Personalizing renal replacement therapy initiation in the intensive care unit: a reinforcement learning-based strategy with external validation on the AKIKI randomized controlled trials

Author:

Grolleau François12,Petit François1,Gaudry Stéphane345,Diard Élise12,Quenot Jean-Pierre678,Dreyfuss Didier59,Tran Viet-Thi12,Porcher Raphaël12ORCID

Affiliation:

1. Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Center for Research in Epidemiology and StatisticS (CRESS) , Paris, F-75004, France

2. Centre d’Epidémiologie Clinique, AP-HP, Hôpital Hôtel Dieu , Paris, F-75004, France

3. Service de Réanimation Médico-Chirurgicale, AP-HP, Hôpital Avicenne, Université Sorbonne Paris Nord , Bobigny, 93430, France

4. Health Care Simulation Center, UFR SMBH, Sorbonne Paris Cité , Bobigny, 93017, France

5. INSERM UMR S1155, Sorbonne Université, CORAKID, Hôpital Tenon , Paris, 75020, France

6. Department of Intensive Care, François Mitterrand University Hospital , Dijon, 21000, France

7. Lipness Team, INSERM Research Center, LNC-UMR1231 and LabEx LipSTIC , Dijon, 21000, France

8. INSERM CIC 1432, Clinical Epidemiology, University of Burgundy , Dijon, 21000, France

9. Service de Médecine Intensive-Réanimation, Sorbonne Université, Hôpital Louis Mourier, AP-HP, Université Paris-Cité , Paris, F-75018, France

Abstract

Abstract Objective The timely initiation of renal replacement therapy (RRT) for acute kidney injury (AKI) requires sequential decision-making tailored to individuals’ evolving characteristics. To learn and validate optimal strategies for RRT initiation, we used reinforcement learning on clinical data from routine care and randomized controlled trials. Materials and methods We used the MIMIC-III database for development and AKIKI trials for validation. Participants were adult ICU patients with severe AKI receiving mechanical ventilation or catecholamine infusion. We used a doubly robust estimator to learn when to start RRT after the occurrence of severe AKI for three days in a row. We developed a “crude strategy” maximizing the population-level hospital-free days at day 60 (HFD60) and a “stringent strategy” recommending RRT when there is significant evidence of benefit for an individual. For validation, we evaluated the causal effects of implementing our learned strategies versus following current best practices on HFD60. Results We included 3748 patients in the development set and 1068 in the validation set. Through external validation, the crude and stringent strategies yielded an average difference of 13.7 [95% CI −5.3 to 35.7] and 14.9 [95% CI −3.2 to 39.2] HFD60, respectively, compared to current best practices. The stringent strategy led to initiating RRT within 3 days in 14% of patients versus 38% under best practices. Discussion Implementing our strategies could improve the average number of days that ICU patients spend alive and outside the hospital while sparing RRT for many. Conclusion We developed and validated a practical and interpretable dynamic decision support system for RRT initiation in the ICU.

Funder

Université Paris Cité

French Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3