Incorporating real-world evidence into the development of patient blood glucose prediction algorithms for the ICU

Author:

Fitzgerald Oisin1ORCID,Perez-Concha Oscar1ORCID,Gallego Blanca1ORCID,Saxena Manoj K2,Rudd Lachlan3,Metke-Jimenez Alejandro4,Jorm Louisa1ORCID

Affiliation:

1. Centre for Big Data Research in Health, UNSW Sydney, Sydney, NSW, Australia

2. The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia

3. Data and Analytics, eHealth NSW, Chatswood, NSW, Australia

4. Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia

Abstract

Abstract Objective Glycemic control is an important component of critical care. We present a data-driven method for predicting intensive care unit (ICU) patient response to glycemic control protocols while accounting for patient heterogeneity and variations in care. Materials and Methods Using electronic medical records (EMRs) of 18 961 ICU admissions from the MIMIC-III dataset, including 318 574 blood glucose measurements, we train and validate a gradient boosted tree machine learning (ML) algorithm to forecast patient blood glucose and a 95% prediction interval at 2-hour intervals. The model uses as inputs irregular multivariate time series data relating to recent in-patient medical history and glycemic control, including previous blood glucose, nutrition, and insulin dosing. Results Our forecasting model using routinely collected EMRs achieves performance comparable to previous models developed in planned research studies using continuous blood glucose monitoring. Model error, expressed as mean absolute percentage error is 16.5%–16.8%, with Clarke error grid analysis demonstrating that 97% of predictions would be clinically acceptable. The 95% prediction intervals achieve near intended coverage at 93%–94%. Discussion ML algorithms built on observational data sources, such as EMRs, present a promising approach for personalization and automation of glycemic control in critical care. Future research may benefit from applying a combination of methodologies and data sources to develop robust methodologies that account for the variations seen in ICU patients and difficultly in detecting the extremes of observed blood glucose values. Conclusion We demonstrate that EMRs can be used to train ML algorithms that may be suitable for incorporation into ICU decision support systems.

Funder

Commonwealth Industrial and Scientific Research Organisation

Australian government

Australian Government Research Training Program scholarship

CSIRO

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3