The impact of learning Unified Medical Language System knowledge embeddings in relation extraction from biomedical texts

Author:

Weinzierl Maxwell A1ORCID,Maldonado Ramon1,Harabagiu Sanda M1

Affiliation:

1. Human Language Technology Research Institute, Department of Computer Science, Erik Jonsson School of Engineering & Computer Science, University of Texas at Dallas, Richardson, Texas, USA

Abstract

Abstract Objective We explored how knowledge embeddings (KEs) learned from the Unified Medical Language System (UMLS) Metathesaurus impact the quality of relation extraction on 2 diverse sets of biomedical texts. Materials and Methods Two forms of KEs were learned for concepts and relation types from the UMLS Metathesaurus, namely lexicalized knowledge embeddings (LKEs) and unlexicalized KEs. A knowledge embedding encoder (KEE) enabled learning either LKEs or unlexicalized KEs as well as neural models capable of producing LKEs for mentions of biomedical concepts in texts and relation types that are not encoded in the UMLS Metathesaurus. This allowed us to design the relation extraction with knowledge embeddings (REKE) system, which incorporates either LKEs or unlexicalized KEs produced for relation types of interest and their arguments. Results The incorporation of either LKEs or unlexicalized KE in REKE advances the state of the art in relation extraction on 2 relation extraction datasets: the 2010 i2b2/VA dataset and the 2013 Drug-Drug Interaction Extraction Challenge corpus. Moreover, the impact of LKEs is superior, achieving F1 scores of 78.2 and 82.0, respectively. Discussion REKE not only highlights the importance of incorporating knowledge encoded in the UMLS Metathesaurus in a novel way, through 2 possible forms of KEs, but it also showcases the subtleties of incorporating KEs in relation extraction systems. Conclusions Incorporating LKEs informed by the UMLS Metathesaurus in a relation extraction system operating on biomedical texts shows significant promise. We present the REKE system, which establishes new state-of-the-art results for relation extraction on 2 datasets when using LKEs.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3