Machine learning approach for early detection of autism by combining questionnaire and home video screening

Author:

Abbas Halim1,Garberson Ford1ORCID,Glover Eric,Wall Dennis P123

Affiliation:

1. Cognoa Inc., Palo Alto, CA, USA www.linkedin.com/in/halimabbas

2. Department of Pediatrics, Stanford University, Stanford, CA, USA

3. Department of Biomedical Data Science, Stanford University, Stanford, CA, USA

Abstract

Abstract Background Existing screening tools for early detection of autism are expensive, cumbersome, time- intensive, and sometimes fall short in predictive value. In this work, we sought to apply Machine Learning (ML) to gold standard clinical data obtained across thousands of children at-risk for autism spectrum disorder to create a low-cost, quick, and easy to apply autism screening tool. Methods Two algorithms are trained to identify autism, one based on short, structured parent-reported questionnaires and the other on tagging key behaviors from short, semi-structured home videos of children. A combination algorithm is then used to combine the results into a single assessment of higher accuracy. To overcome the scarcity, sparsity, and imbalance of training data, we apply novel feature selection, feature engineering, and feature encoding techniques. We allow for inconclusive determination where appropriate in order to boost screening accuracy when conclusive. The performance is then validated in a controlled clinical study. Results A multi-center clinical study of n = 162 children is performed to ascertain the performance of these algorithms and their combination. We demonstrate a significant accuracy improvement over standard screening tools in measurements of AUC, sensitivity, and specificity. Conclusion These findings suggest that a mobile, machine learning process is a reliable method for detection of autism outside of clinical settings. A variety of confounding factors in the clinical analysis are discussed along with the solutions engineered into the algorithms. Final results are statistically limited and will benefit from future clinical studies to extend the sample size.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3