Taiyi: a bilingual fine-tuned large language model for diverse biomedical tasks

Author:

Luo Ling1ORCID,Ning Jinzhong1,Zhao Yingwen1,Wang Zhijun1,Ding Zeyuan1,Chen Peng1ORCID,Fu Weiru1,Han Qinyu1,Xu Guangtao1,Qiu Yunzhi1,Pan Dinghao1,Li Jiru1,Li Hao1,Feng Wenduo1,Tu Senbo1,Liu Yuqi1,Yang Zhihao1ORCID,Wang Jian1,Sun Yuanyuan1,Lin Hongfei1

Affiliation:

1. School of Computer Science and Technology, Dalian University of Technology , Dalian 116024, China

Abstract

Abstract Objective Most existing fine-tuned biomedical large language models (LLMs) focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To investigate the effectiveness of the fine-tuned LLMs on diverse biomedical natural language processing (NLP) tasks in different languages, we present Taiyi, a bilingual fine-tuned LLM for diverse biomedical NLP tasks. Materials and Methods We first curated a comprehensive collection of 140 existing biomedical text mining datasets (102 English and 38 Chinese datasets) across over 10 task types. Subsequently, these corpora were converted to the instruction data used to fine-tune the general LLM. During the supervised fine-tuning phase, a 2-stage strategy is proposed to optimize the model performance across various tasks. Results Experimental results on 13 test sets, which include named entity recognition, relation extraction, text classification, and question answering tasks, demonstrate that Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi’s considerable potential for bilingual biomedical multitasking. Conclusion Leveraging rich high-quality biomedical corpora and developing effective fine-tuning strategies can significantly improve the performance of LLMs within the biomedical domain. Taiyi shows the bilingual multitasking capability through supervised fine-tuning. However, those tasks such as information extraction that are not generation tasks in nature remain challenging for LLM-based generative approaches, and they still underperform the conventional discriminative approaches using smaller language models.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Reference51 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3