3D deep learning for detecting pulmonary nodules in CT scans

Author:

Gruetzemacher Ross1,Gupta Ashish1,Paradice David1

Affiliation:

1. Department of Systems & Technology, Raymond J. Harbert College of Business, Auburn University, Auburn, AL, USA 36849

Abstract

Abstract Objective To demonstrate and test the validity of a novel deep-learning-based system for the automated detection of pulmonary nodules. Materials and Methods The proposed system uses 2 3D deep learning models, 1 for each of the essential tasks of computer-aided nodule detection: candidate generation and false positive reduction. A total of 888 scans from the LIDC-IDRI dataset were used for training and evaluation. Results Results for candidate generation on the test data indicated a detection rate of 94.77% with 30.39 false positives per scan, while the test results for false positive reduction exhibited a sensitivity of 94.21% with 1.789 false positives per scan. The overall system detection rate on the test data was 89.29% with 1.789 false positives per scan. Discussion An extensive and rigorous validation was conducted to assess the performance of the proposed system. The system demonstrated a novel combination of 3D deep neural network architectures and demonstrates the use of deep learning for both candidate generation and false positive reduction to be evaluated with a substantial test dataset. The results strongly support the ability of deep learning pulmonary nodule detection systems to generalize to unseen data. The source code and trained model weights have been made available. Conclusion A novel deep-neural-network-based pulmonary nodule detection system is demonstrated and validated. The results provide comparison of the proposed deep-learning-based system over other similar systems based on performance.

Funder

Auburn University

National Cancer Institute and the Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3