Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routing

Author:

Roy Subhrajit1,Mincu Diana1,Loreaux Eric1,Mottram Anne1,Protsyuk Ivan1,Harris Natalie1,Xue Yuan2,Schrouff Jessica1,Montgomery Hugh3,Connell Alistair1,Tomasev Nenad4,Karthikesalingam Alan1,Seneviratne Martin1ORCID

Affiliation:

1. Google Health, London, United Kingdom

2. Google Health, Mountain View, California, USA

3. Centre for Human Health and Performance, University College London, London, United Kingdom

4. DeepMind, London, United Kingdom

Abstract

Abstract Objective Multitask learning (MTL) using electronic health records allows concurrent prediction of multiple endpoints. MTL has shown promise in improving model performance and training efficiency; however, it often suffers from negative transfer – impaired learning if tasks are not appropriately selected. We introduce a sequential subnetwork routing (SeqSNR) architecture that uses soft parameter sharing to find related tasks and encourage cross-learning between them. Materials and Methods Using the MIMIC-III (Medical Information Mart for Intensive Care-III) dataset, we train deep neural network models to predict the onset of 6 endpoints including specific organ dysfunctions and general clinical outcomes: acute kidney injury, continuous renal replacement therapy, mechanical ventilation, vasoactive medications, mortality, and length of stay. We compare single-task (ST) models with naive multitask and SeqSNR in terms of discriminative performance and label efficiency. Results SeqSNR showed a modest yet statistically significant performance boost across 4 of 6 tasks compared with ST and naive multitasking. When the size of the training dataset was reduced for a given task (label efficiency), SeqSNR outperformed ST for all cases showing an average area under the precision-recall curve boost of 2.1%, 2.9%, and 2.1% for tasks using 1%, 5%, and 10% of labels, respectively. Conclusions The SeqSNR architecture shows superior label efficiency compared with ST and naive multitasking, suggesting utility in scenarios in which endpoint labels are difficult to ascertain.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3