Affiliation:
1. Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
2. College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
Abstract
Abstract
Objective
We sought to demonstrate the feasibility of utilizing deep learning models to extract safety signals related to the use of dietary supplements (DSs) in clinical text.
Materials and Methods
Two tasks were performed in this study. For the named entity recognition (NER) task, Bi-LSTM-CRF (bidirectional long short-term memory conditional random field) and BERT (bidirectional encoder representations from transformers) models were trained and compared with CRF model as a baseline to recognize the named entities of DSs and events from clinical notes. In the relation extraction (RE) task, 2 deep learning models, including attention-based Bi-LSTM and convolutional neural network as well as a random forest model were trained to extract the relations between DSs and events, which were categorized into 3 classes: positive (ie, indication), negative (ie, adverse events), and not related. The best performed NER and RE models were further applied on clinical notes mentioning 88 DSs for discovering DSs adverse events and indications, which were compared with a DS knowledge base.
Results
For the NER task, deep learning models achieved a better performance than CRF, with F1 scores above 0.860. The attention-based Bi-LSTM model performed the best in the RE task, with an F1 score of 0.893. When comparing DS event pairs generated by the deep learning models with the knowledge base for DSs and event, we found both known and unknown pairs.
Conclusions
Deep learning models can detect adverse events and indication of DSs in clinical notes, which hold great potential for monitoring the safety of DS use.
Funder
National Institute of Health
Dietary Supplements
National Institute on Aging
Clinical and Translational Science Award program
National Center for Complementary and Integrative Health
Publisher
Oxford University Press (OUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献