Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories

Author:

Sáez Carlos12,Zurriaga Oscar345,Pérez-Panadés Jordi3,Melchor Inma3,Robles Montserrat1,García-Gómez Juan M16

Affiliation:

1. Instituto Universitario de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas. Universitat Politècnica de València. Camino de Vera s/n. 46022 Valencia, España

2. Centre for Health Technologies and Services Research, University of Porto, Porto, Portugal

3. Dirección General de Salud Pública, Conselleria de Sanidad, Valencia, Spain

4. FISABIO – Salud Pública, Consellería de Sanidad, Valencia, Spain

5. CIBERESP, Madrid, Spain

6. Unidad Mixta de Investigación en TICs aplicadas a la Reingeniería de Procesos Sociosanitarios (eRPSS), Instituto de Investigación Sanitaria del Hospital Universitario y Politécnico La Fe, Valencia, Spain

Abstract

Abstract Objective To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Materials and Methods Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. Results The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Discussion Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Conclusion Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures.

Funder

Spanish Ministry of Economy and Competitiveness

Universitat Politècnica de València

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference44 articles.

1. Big data and smart health strategies: findings from the health information systems perspective;Toubiana;IMIA Yearb.,2014

2. The Shared Health Research Information Network (SHRINE): a prototype federated query tool for clinical data repositories;Weber;J Am Med Inform Assoc.,2009

3. SHRINE: enabling nationally scalable multisite disease studies. Carter KW, editor;McMurry;PLoS ONE.,2013

4. An i2b2-based, generalizable, open source, self-scaling chronic disease registry;Natter;J Am Med Inform Assoc.,2013

5. Direct2Experts: a pilot national network to demonstrate interoperability among research-networking platforms;Weber;J Am Med Inform Assoc.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3