RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials

Author:

Marshall Iain J1,Kuiper Joël2,Wallace Byron C3

Affiliation:

1. Department of Primary Care and Public Health Sciences, King’s College London, UK

2. University Medical Center, University of Groningen, Groningen, The Netherlands

3. School of Information, University of Texas at Austin, Austin, Texas, USA

Abstract

Abstract Objective To develop and evaluate RobotReviewer, a machine learning (ML) system that automatically assesses bias in clinical trials. From a (PDF-formatted) trial report, the system should determine risks of bias for the domains defined by the Cochrane Risk of Bias (RoB) tool, and extract supporting text for these judgments. Methods We algorithmically annotated 12,808 trial PDFs using data from the Cochrane Database of Systematic Reviews (CDSR). Trials were labeled as being at low or high/unclear risk of bias for each domain, and sentences were labeled as being informative or not. This dataset was used to train a multi-task ML model. We estimated the accuracy of ML judgments versus humans by comparing trials with two or more independent RoB assessments in the CDSR. Twenty blinded experienced reviewers rated the relevance of supporting text, comparing ML output with equivalent (human-extracted) text from the CDSR. Results By retrieving the top 3 candidate sentences per document (top3 recall), the best ML text was rated more relevant than text from the CDSR, but not significantly (60.4% ML text rated ‘highly relevant' v 56.5% of text from reviews; difference +3.9%, [−3.2% to +10.9%]). Model RoB judgments were less accurate than those from published reviews, though the difference was <10% (overall accuracy 71.0% with ML v 78.3% with CDSR). Conclusion Risk of bias assessment may be automated with reasonable accuracy. Automatically identified text supporting bias assessment is of equal quality to the manually identified text in the CDSR. This technology could substantially reduce reviewer workload and expedite evidence syntheses.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3