An interpretable predictive deep learning platform for pediatric metabolic diseases

Author:

Javidi Hamed123,Mariam Arshiya13,Alkhaled Lina34,Pantalone Kevin M34,Rotroff Daniel M1234ORCID

Affiliation:

1. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195, United States

2. Department of Electrical Engineering and Computer Science, Cleveland State University , Cleveland, OH 44115, United States

3. Center for Quantitative Metabolic Research, Cleveland Clinic , Cleveland, OH 44195, United States

4. Endocrinology and Metabolism Institute, Cleveland Clinic , Cleveland, OH 44195, United States

Abstract

Abstract Objectives Metabolic disease in children is increasing worldwide and predisposes a wide array of chronic comorbid conditions with severe impacts on quality of life. Tools for early detection are needed to promptly intervene to prevent or slow the development of these long-term complications. Materials and Methods No clinically available tools are currently in widespread use that can predict the onset of metabolic diseases in pediatric patients. Here, we use interpretable deep learning, leveraging longitudinal clinical measurements, demographical data, and diagnosis codes from electronic health record data from a large integrated health system to predict the onset of prediabetes, type 2 diabetes (T2D), and metabolic syndrome in pediatric cohorts. Results The cohort included 49 517 children with overweight or obesity aged 2-18 (54.9% male, 73% Caucasian), with a median follow-up time of 7.5 years and mean body mass index (BMI) percentile of 88.6%. Our model demonstrated area under receiver operating characteristic curve (AUC) accuracies up to 0.87, 0.79, and 0.79 for predicting T2D, metabolic syndrome, and prediabetes, respectively. Whereas most risk calculators use only recently available data, incorporating longitudinal data improved AUCs by 13.04%, 11.48%, and 11.67% for T2D, syndrome, and prediabetes, respectively, versus models using the most recent BMI (P < 2.2 × 10–16). Discussion Despite most risk calculators using only the most recent data, incorporating longitudinal data improved the model accuracies because utilizing trajectories provides a more comprehensive characterization of the patient’s health history. Our interpretable model indicated that BMI trajectories were consistently identified as one of the most influential features for prediction, highlighting the advantages of incorporating longitudinal data when available.

Funder

Cleveland Clinic Center for Quantitative Metabolic Research

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3