Predicting outcomes in central venous catheter salvage in pediatric central line–associated bloodstream infection

Author:

Walker Lorne W12ORCID,Nowalk Andrew J3,Visweswaran Shyam45ORCID

Affiliation:

1. Division of Pediatric Infectious Diseases, Oregon Health and Sciences University, Portland, Oregon, USA

2. Department of Medical Informatics and Medical Epidemiology, Oregon Health and Sciences University, Portland, Oregon, USA

3. Division of Infectious Diseases, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA

4. Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

5. Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Abstract

Abstract Objective Central line–associated bloodstream infections (CLABSIs) are a common, costly, and hazardous healthcare-associated infection in children. In children in whom continued access is critical, salvage of infected central venous catheters (CVCs) with antimicrobial lock therapy is an alternative to removal and replacement of the CVC. However, the success of CVC salvage is uncertain, and when it fails the catheter has to be removed and replaced. We describe a machine learning approach to predict individual outcomes in CVC salvage that can aid the clinician in the decision to attempt salvage. Materials and Methods Over a 14-year period, 969 pediatric CLABSIs were identified in electronic health records. We used 164 potential predictors to derive 4 types of machine learning models to predict 2 failed salvage outcomes, infection recurrence and CVC removal, at 10 time points between 7 days and 1 year from infection onset. Results The area under the receiver-operating characteristic curve varied from 0.56 to 0.83, and key predictors varied over time. The infection recurrence model performed better than the CVC removal model did. Conclusions Machine learning–based outcome prediction can inform clinical decision making for children. We developed and evaluated several models to predict clinically relevant outcomes in the context of CVC salvage in pediatric CLABSI and illustrate the variability of predictors over time.

Funder

National Library of Medicine

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3