Transformer-based time-to-event prediction for chronic kidney disease deterioration

Author:

Zisser Moshe1,Aran Dvir23

Affiliation:

1. Faculty of Data and Decision Sciences, Technion-Israel Institute of Technology , Haifa, 3200003, Israel

2. Faculty of Biology, Technion-Israel Institute of Technology , Haifa, 3200003, Israel

3. The Taub Faculty of Computer Science, Technion-Israel Institute of Technology , Haifa, 3200003, Israel

Abstract

Abstract Objective Deep-learning techniques, particularly the Transformer model, have shown great potential in enhancing the prediction performance of longitudinal health records. Previous methods focused on fixed-time risk prediction, however, time-to-event prediction is often more appropriate for clinical scenarios. Here, we present STRAFE, a generalizable survival analysis Transformer-based architecture for electronic health records. Materials and Methods The input for STRAFE is a sequence of visits with SNOMED-CT codes in OMOP-CDM format. A Transformer-based architecture was developed to calculate probabilities of the occurrence of the event in each of 48 months. Performance was evaluated using a real-world claims dataset of over 130 000 individuals with stage 3 chronic kidney disease (CKD). Results STRAFE showed improved mean absolute error (MAE) compared to other time-to-event algorithms in predicting the time to deterioration to stage 5 CKD. Additionally, STRAFE showed an improved area under the receiver operating curve compared to binary outcome algorithms. We show that STRAFE predictions can improve the positive predictive value of high-risk patients by 3-fold. Finally, we suggest a novel visualization approach to predictions on a per-patient basis. Discussion Time-to-event predictions are the most appropriate approach for clinical predictions. Our deep-learning algorithm outperformed not only other time-to-event prediction algorithms but also fixed-time algorithms, possibly due to its ability to train on censored data. We demonstrated possible clinical usage by identifying the highest-risk patients. Conclusions The ability to accurately identify patients at high risk and prioritize their needs can result in improved health outcomes, reduced costs, and more efficient use of resources.

Publisher

Oxford University Press (OUP)

Reference29 articles.

1. Policy implications of big data in the health sector;Vayena;Bulletin of the World Health Organisation,2017

2. Big data analytics in healthcare: promise and potential;Raghupathi;Health Inf. Sci. Syst,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3