Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods

Author:

Christopoulou Fenia12ORCID,Tran Thy Thy12,Sahu Sunil Kumar1,Miwa Makoto23,Ananiadou Sophia12

Affiliation:

1. National Centre for Text Mining, School of Computer Science, The University of Manchester, Manchester, United Kingdom

2. Artificial Intelligence Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

3. Toyota Technological Institute, Nagoya, Japan

Abstract

AbstractObjectiveIdentification of drugs, associated medication entities, and interactions among them are crucial to prevent unwanted effects of drug therapy, known as adverse drug events. This article describes our participation to the n2c2 shared-task in extracting relations between medication-related entities in electronic health records.Materials and MethodsWe proposed an ensemble approach for relation extraction and classification between drugs and medication-related entities. We incorporated state-of-the-art named-entity recognition (NER) models based on bidirectional long short-term memory (BiLSTM) networks and conditional random fields (CRF) for end-to-end extraction. We additionally developed separate models for intra- and inter-sentence relation extraction and combined them using an ensemble method. The intra-sentence models rely on bidirectional long short-term memory networks and attention mechanisms and are able to capture dependencies between multiple related pairs in the same sentence. For the inter-sentence relations, we adopted a neural architecture that utilizes the Transformer network to improve performance in longer sequences.ResultsOur team ranked third with a micro-averaged F1 score of 94.72% and 87.65% for relation and end-to-end relation extraction, respectively (Tracks 2 and 3). Our ensemble effectively takes advantages from our proposed models. Analysis of the reported results indicated that our proposed approach is more generalizable than the top-performing system, which employs additional training data- and corpus-driven processing techniques.ConclusionsWe proposed a relation extraction system to identify relations between drugs and medication-related entities. The proposed approach is independent of external syntactic tools. Analysis showed that by using latent Drug-Drug interactions we were able to significantly improve the performance of non–Drug-Drug pairs in EHRs.

Funder

Biotechnology and Biological Services Research Council EMPATHY

Manchester Molecular Pathology Innovation Centre

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3