allofus: an R package to facilitate use of the All of Us Researcher Workbench

Author:

Smith Louisa H12ORCID,Cavanaugh Robert12ORCID

Affiliation:

1. Roux Institute, Northeastern University , Portland, ME 04101, United States

2. Department of Public Health and Health Sciences, Bouvé College of Health Sciences, Northeastern University , Boston, MA 02115, United States

Abstract

Abstract Objectives Despite easy-to-use tools like the Cohort Builder, using All of Us Research Program data for complex research questions requires a relatively high level of technical expertise. We aimed to increase research and training capacity and reduce barriers to entry for the All of Us community through an R package, allofus. In this article, we describe functions that address common challenges we encountered while working with All of Us Research Program data, and we demonstrate this functionality with an example of creating a cohort of All of Us participants by synthesizing electronic health record and survey data with time dependencies. Target audience All of Us Research Program data are widely available to health researchers. The allofus R package is aimed at a wide range of researchers who wish to conduct complex analyses using best practices for reproducibility and transparency, and who have a range of experience using R. Because the All of Us data are transformed into the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM), researchers familiar with existing OMOP CDM tools or who wish to conduct network studies in conjunction with other OMOP CDM data will also find value in the package. Scope We developed an initial set of functions that solve problems we experienced across survey and electronic health record data in our own research and in mentoring student projects. The package will continue to grow and develop with the All of Us Research Program. The allofus R package can help build community research capacity by increasing access to the All of Us Research Program data, the efficiency of its use, and the rigor and reproducibility of the resulting research.

Publisher

Oxford University Press (OUP)

Reference19 articles.

1. The “All of Us” research program;The All of Us Research Program Investigators;N Engl J Med,2019

2. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers;Hripcsak;Stud Health Technol Inform,2015

3. OHDSI Standardized Vocabularies—a large-scale centralized reference ontology for international data harmonization;Reich;J Am Med Inform Assoc,2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pregnancy episodes in All of Us: harnessing multi-source data for pregnancy-related research;Journal of the American Medical Informatics Association;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3