The impact of real-time alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial

Author:

Awdishu Linda12,Coates Carrie R3,Lyddane Adam3,Tran Kim4,Daniels Charles E13,Lee Joshua5,El-Kareh Robert2

Affiliation:

1. UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA, USA

2. UC San Diego School of Medicine, San Diego, CA, USA

3. UC San Diego Health System, San Diego, CA, USA

4. Northeast Georgia Diagnostic Clinic, Gainsville, GA, USA

5. Keck Medicine, University of Southern California, Los Angeles, CA, USA

Abstract

ABSTRACT Background Patients with kidney disease are at risk for adverse events due to improper medication prescribing. Few randomized controlled trials of clinical decision support (CDS) utilizing dynamic assessment of patients’ kidney function to improve prescribing for patients with kidney disease have been published. Methods We developed a CDS tool for 20 medications within a commercial electronic health record. Our system detected scenarios in which drug discontinuation or dosage adjustment was recommended for adult patients with impaired renal function in the ambulatory and acute settings – both at the time of the initial prescription (“prospective” alerts) and by monitoring changes in renal function for patients already receiving one of the study medications (“look-back” alerts). We performed a prospective, cluster randomized controlled trial of physicians receiving clinical decision support for renal dosage adjustments versus those performing their usual workflow. The primary endpoint was the proportion of study prescriptions that were appropriately adjusted for patients’ kidney function at the time that patients’ conditions warranted a change according to the alert logic. We employed multivariable logistic regression modeling to adjust for glomerular filtration rate, gender, age, hospitalized status, length of stay, type of alert, time from start of study, and clustering within the prescribing physician on the primary endpoint. Results A total of 4068 triggering conditions occurred in 1278 unique patients; 1579 of these triggering conditions generated alerts seen by physicians in the intervention arm and 2489 of these triggering conditions were captured but suppressed, so as not to generate alerts for physicians in the control arm. Prescribing orders were appropriate adjusted in 17% of the time vs 5.7% of the time in the intervention and control arms, respectively (odds ratio: 1.89, 95% confidence interval, 1.45-2.47, P < .0001). Prospective alerts had a greater impact than look-back alerts (55.6% vs 10.3%, in the intervention arm). Conclusions The rate of appropriate drug prescribing in kidney impairment is low and remains a patient safety concern. Our results suggest that CDS improves drug prescribing, particularly when providing guidance on new prescriptions.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3