Reproducible Bioconductor workflows using browser-based interactive notebooks and containers

Author:

Almugbel Reem1,Hung Ling-Hong1,Hu Jiaming1,Almutairy Abeer1,Ortogero Nicole2,Tamta Yashaswi1,Yeung Ka Yee1

Affiliation:

1. Institute of Technology, University of Washington, Tacoma, WA, USA

2. Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA

Abstract

Abstract Objective Bioinformatics publications typically include complex software workflows that are difficult to describe in a manuscript. We describe and demonstrate the use of interactive software notebooks to document and distribute bioinformatics research. We provide a user-friendly tool, BiocImageBuilder, that allows users to easily distribute their bioinformatics protocols through interactive notebooks uploaded to either a GitHub repository or a private server. Materials and methods We present four different interactive Jupyter notebooks using R and Bioconductor workflows to infer differential gene expression, analyze cross-platform datasets, process RNA-seq data and KinomeScan data. These interactive notebooks are available on GitHub. The analytical results can be viewed in a browser. Most importantly, the software contents can be executed and modified. This is accomplished using Binder, which runs the notebook inside software containers, thus avoiding the need to install any software and ensuring reproducibility. All the notebooks were produced using custom files generated by BiocImageBuilder. Results BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface. We demonstrate that interactive notebooks can be used to disseminate a wide range of bioinformatics analyses. The use of software containers to mirror the original software environment ensures reproducibility of results. Parameters and code can be dynamically modified, allowing for robust verification of published results and encouraging rapid adoption of new methods. Conclusion Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive software notebooks will become as necessary for documenting software methods as traditional laboratory notebooks have been for documenting bench protocols, and as ubiquitous.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference62 articles.

1. The economics of reproducibility in preclinical research;Freedman;PLoS Biol.,2015

2. Software solutions for reproducible RNA-seq workflows;Meiss;bioRxiv.,2017

3. Bioconductor: open software development for computational biology and bioinformatics;Gentleman;Genome Biol.,2004

4. Rapid and efficient analysis of 20,000 RNA-seq samples with Toil;Vivian;bioRxiv.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3