Machine learning to predict notes for chart review in the oncology setting: a proof of concept strategy for improving clinician note-writing

Author:

Jiang Sharon12ORCID,Lam Barbara D34ORCID,Agrawal Monica12,Shen Shannon12,Kurtzman Nicholas5,Horng Steven45ORCID,Karger David R12,Sontag David12

Affiliation:

1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , Cambridge, MA 02139, United States

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , Cambridge, MA 02139, United States

3. Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, MA 02215, United States

4. Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, MA 02215, United States

5. Department of Emergency Medicine, Beth Israel Deaconess Medical Center , Boston, MA 02215, United States

Abstract

Abstract Objective Leverage electronic health record (EHR) audit logs to develop a machine learning (ML) model that predicts which notes a clinician wants to review when seeing oncology patients. Materials and Methods We trained logistic regression models using note metadata and a Term Frequency Inverse Document Frequency (TF-IDF) text representation. We evaluated performance with precision, recall, F1, AUC, and a clinical qualitative assessment. Results The metadata only model achieved an AUC 0.930 and the metadata and TF-IDF model an AUC 0.937. Qualitative assessment revealed a need for better text representation and to further customize predictions for the user. Discussion Our model effectively surfaces the top 10 notes a clinician wants to review when seeing an oncology patient. Further studies can characterize different types of clinician users and better tailor the task for different care settings. Conclusion EHR audit logs can provide important relevance data for training ML models that assist with note-writing in the oncology setting.

Funder

MIT Abdul Latif Jameel Clinic for Machine Learning in Health

National Science Foundation

Machine Learning Core

Beth Israel Deaconess Medical Center

MIT Deshpande Center

MachineLearningApplications@CSAIL initiative

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3