Estimating the causal effects of chronic disease combinations on 30-day hospital readmissions based on observational Medicaid data

Author:

Casucci Sabrina1,Lin Li1,Hewner Sharon2,Nikolaev Alexander1

Affiliation:

1. Industrial and Systems Engineering, State University of New York at Buffalo, Buffalo, NY, USA

2. School of Nursing, State University of New York at Buffalo, Buffalo, NY, USA

Abstract

Abstract Objective Demonstrate how observational causal inference methods can generate insights into the impact of chronic disease combinations on patients’ 30-day hospital readmissions. Materials and Methods Causal effect estimation was used to quantify the impact of each risk factor scenario (ie, chronic disease combination) associated with chronic kidney disease and heart failure (HF) for adult Medicaid beneficiaries with initial hospitalizations in 2 New York State counties. The experimental protocol: (1) created matched risk factor and comparator groups, (2) assessed covariate balance in the matched groups, and (3) estimated causal effects and their statistical significance. Causality lattices summarized the impact of chronic disease comorbidities on readmissions. Results Chronic disease combinations were ordered with respect to their causal impact on readmissions. Of disease combinations associated with HF, the combination of HF, coronary artery disease, and tobacco abuse (in that order) had the highest causal effect on readmission rate (+22.3%); of disease combinations associated with chronic kidney disease, the combination of chronic kidney disease, coronary artery disease, and diabetes had the highest effect (+9.5%). Discussion Multi-hypothesis causal analysis reveals the effects of chronic disease comorbidities on health outcomes. Understanding these effects will guide the development of health care programs that address unique care needs of different patient subpopulations. Additionally, these insights bring new attention to individuals at high risk for readmission based on chronic disease comorbidities, allowing for more personalized attention and prioritization of care. Conclusion Multi-hypothesis causal analysis, a new methodological tool, generates meaningful insights from health care claims data, guiding the design of care and intervention programs.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3