Relation extraction using large language models: a case study on acupuncture point locations

Author:

Li Yiming1ORCID,Peng Xueqing2,Li Jianfu3,Zuo Xu1,Peng Suyuan4,Pei Donghong5,Tao Cui3,Xu Hua2ORCID,Hong Na2

Affiliation:

1. McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX 77030, United States

2. Department of Biomedical Informatics and Data Science, School of Medicine, Yale University , New Haven, CT 06510, United States

3. Department of Artificial Intelligence and Informatics, Mayo Clinic , Jacksonville, FL 32224, United States

4. Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences , Beijing 100010, China

5. The University of Texas MD Anderson Cancer Center , Houston, TX 77030, United States

Abstract

Abstract Objective In acupuncture therapy, the accurate location of acupoints is essential for its effectiveness. The advanced language understanding capabilities of large language models (LLMs) like Generative Pre-trained Transformers (GPTs) and Llama present a significant opportunity for extracting relations related to acupoint locations from textual knowledge sources. This study aims to explore the performance of LLMs in extracting acupoint-related location relations and assess the impact of fine-tuning on GPT’s performance. Materials and Methods We utilized the World Health Organization Standard Acupuncture Point Locations in the Western Pacific Region (WHO Standard) as our corpus, which consists of descriptions of 361 acupoints. Five types of relations (“direction_of”, “distance_of”, “part_of”, “near_acupoint”, and “located_near”) (n = 3174) between acupoints were annotated. Four models were compared: pre-trained GPT-3.5, fine-tuned GPT-3.5, pre-trained GPT-4, as well as pretrained Llama 3. Performance metrics included micro-average exact match precision, recall, and F1 scores. Results Our results demonstrate that fine-tuned GPT-3.5 consistently outperformed other models in F1 scores across all relation types. Overall, it achieved the highest micro-average F1 score of 0.92. Discussion The superior performance of the fine-tuned GPT-3.5 model, as shown by its F1 scores, underscores the importance of domain-specific fine-tuning in enhancing relation extraction capabilities for acupuncture-related tasks. In light of the findings from this study, it offers valuable insights into leveraging LLMs for developing clinical decision support and creating educational modules in acupuncture. Conclusion This study underscores the effectiveness of LLMs like GPT and Llama in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice. The findings also contribute to advancing informatics applications in traditional and complementary medicine, showcasing the potential of LLMs in natural language processing.

Publisher

Oxford University Press (OUP)

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3