Could an artificial intelligence approach to prior authorization be more human?

Author:

Lenert Leslie A1,Lane Steven2,Wehbe Ramsey3

Affiliation:

1. Biomedical Informatics Center, Medical University of South Carolina , Charleston, South Carolina, USA

2. Health Gorilla , Mountain View, California, USA

3. Department of Cardiology, Medical University of South Carolina , Charleston, South Carolina, USA

Abstract

Abstract Prior authorization (PA) may be a necessary evil within the healthcare system, contributing to physician burnout and delaying necessary care, but also allowing payers to prevent wasting resources on redundant, expensive, and/or ineffective care. PA has become an “informatics issue” with the rise of automated methods for PA review, championed in the Health Level 7 International’s (HL7’s) DaVinci Project. DaVinci proposes using rule-based methods to automate PA, a time-tested strategy with known limitations. This article proposes an alternative that may be more human-centric, using artificial intelligence (AI) methods for the computation of authorization decisions. We believe that by combining modern approaches for accessing and exchanging existing electronic health data with AI methods tailored to reflect the judgments of expert panels that include patient representatives, and refined with “few shot” learning approaches to prevent bias, we could create a just and efficient process that serves the interests of society as a whole. Efficient simulation of human appropriateness assessments from existing data using AI methods could eliminate burdens and bottlenecks while preserving PA’s benefits as a tool to limit inappropriate care.

Funder

National Center for Advancing Translational Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference37 articles.

1. Changing the game of prior authorization: the patient perspective;Gaines;JAMA

2. Refocusing medication prior authorization on its intended purpose;Resneck;JAMA

3. Prior authorization as a potential support of patient-centered care;Rand;Patient,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3