Measure what matters: Counts of hospitalized patients are a better metric for health system capacity planning for a reopening

Author:

Kashyap Sehj1ORCID,Gombar Saurabh2,Yadlowsky Steve3,Callahan Alison1,Fries Jason1,Pinsky Benjamin A2,Shah Nigam H1

Affiliation:

1. Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA

2. Department of Pathology and Medicine, Stanford University School of Medicine, Stanford, California, USA

3. Deptartment of Electrical Engineering, Stanford University, Stanford, California, USA

Abstract

Abstract Objective Responding to the COVID-19 pandemic requires accurate forecasting of health system capacity requirements using readily available inputs. We examined whether testing and hospitalization data could help quantify the anticipated burden on the health system given shelter-in-place (SIP) order. Materials and Methods 16,103 SARS-CoV-2 RT-PCR tests were performed on 15,807 patients at Stanford facilities between March 2 and April 11, 2020. We analyzed the fraction of tested patients that were confirmed positive for COVID-19, the fraction of those needing hospitalization, and the fraction requiring ICU admission over the 40 days between March 2nd and April 11th 2020. Results We find a marked slowdown in the hospitalization rate within ten days of SIP even as cases continued to rise. We also find a shift towards younger patients in the age distribution of those testing positive for COVID-19 over the four weeks of SIP. The impact of this shift is a divergence between increasing positive case confirmations and slowing new hospitalizations, both of which affects the demand on health systems. Conclusion Without using local hospitalization rates and the age distribution of positive patients, current models are likely to overestimate the resource burden of COVID-19. It is imperative that health systems start using these data to quantify effects of SIP and aid reopening planning.

Funder

National Library of Medicine

NHS

Stanford Health CEO Innovation Fund

Debra and Mark Leslie endowment for AI in Healthcare

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference21 articles.

1. IHME COVID-19 Health Service Utilization Forecasting Team, Murray CJL. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months;medRxiv

2. A model to forecast regional demand for COVID-19 related hospital beds;Ferstad;medRxiv

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3