Derivation and validation of a machine learning record linkage algorithm between emergency medical services and the emergency department

Author:

Redfield Colby1,Tlimat Abdulhakim12,Halpern Yoni3,Schoenfeld David W1,Ullman Edward1,Sontag David A45,Nathanson Larry A12,Horng Steven126ORCID

Affiliation:

1. Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

2. Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

3. Department of Computer Science, New York University, New York, New York, USA

4. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

5. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

6. Center for Healthcare Delivery Science, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

Abstract

Abstract Objective Linking emergency medical services (EMS) electronic patient care reports (ePCRs) to emergency department (ED) records can provide clinicians access to vital information that can alter management. It can also create rich databases for research and quality improvement. Unfortunately, previous attempts at ePCR and ED record linkage have had limited success. In this study, we use supervised machine learning to derive and validate an automated record linkage algorithm between EMS ePCRs and ED records. Materials and Methods All consecutive ePCRs from a single EMS provider between June 2013 and June 2015 were included. A primary reviewer matched ePCRs to a list of ED patients to create a gold standard. Age, gender, last name, first name, social security number, and date of birth were extracted. Data were randomly split into 80% training and 20% test datasets. We derived missing indicators, identical indicators, edit distances, and percent differences. A multivariate logistic regression model was trained using 5-fold cross-validation, using label k-fold, L2 regularization, and class reweighting. Results A total of 14 032 ePCRs were included in the study. Interrater reliability between the primary and secondary reviewer had a kappa of 0.9. The algorithm had a sensitivity of 99.4%, a positive predictive value of 99.9%, and an area under the receiver-operating characteristic curve of 0.99 in both the training and test datasets. Date-of-birth match had the highest odds ratio of 16.9, followed by last name match (10.6). Social security number match had an odds ratio of 3.8. Conclusions We were able to successfully derive and validate a record linkage algorithm from a single EMS ePCR provider to our hospital EMR.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3