Predicting complications of diabetes mellitus using advanced machine learning algorithms

Author:

Ljubic Branimir1ORCID,Hai Ameen Abdel1,Stanojevic Marija1,Diaz Wilson1,Polimac Daniel1,Pavlovski Martin1,Obradovic Zoran1

Affiliation:

1. Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA

Abstract

Abstract Objective We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. Materials and Methods Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. Results The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% – 76%. Discussion The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. Conclusions The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.

Funder

King Abdullah University of Science and Technology Center Partnership Fund

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference34 articles.

1. The pathologic continuum of diabetic vascular disease;Orasanu;J Am Coll Cardiol,2009

2. Management of patients with stable angina and type 2 diabetes;Deedwania;Rev Cardiovasc Med,2015

3. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies;Duh;JCI Insight,2017

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3