Reliable generation of privacy-preserving synthetic electronic health record time series via diffusion models

Author:

Tian Muhang1,Chen Bernie2,Guo Allan1,Jiang Shiyi2ORCID,Zhang Anru R13ORCID

Affiliation:

1. Department of Computer Science, Duke University , Durham, NC 27708, United States

2. Department of Electrical & Computer Engineering, Duke University , Durham, NC 27708, United States

3. Department of Biostatistics & Bioinformatics, Duke University , Durham, NC 27708, United States

Abstract

Abstract Objective Electronic health records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis. However, privacy concerns often restrict access to EHRs, hindering downstream analysis. Current EHR deidentification methods are flawed and can lead to potential privacy leakage. Additionally, existing publicly available EHR databases are limited, preventing the advancement of medical research using EHR. This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHRs time series efficiently. Materials and Methods We introduce a new method for generating diverse and realistic synthetic EHR time series data using denoizing diffusion probabilistic models. We conducted experiments on 6 databases: Medical Information Mart for Intensive Care III and IV, the eICU Collaborative Research Database (eICU), and non-EHR datasets on Stocks and Energy. We compared our proposed method with 8 existing methods. Results Our results demonstrate that our approach significantly outperforms all existing methods in terms of data fidelity while requiring less training effort. Additionally, data generated by our method yield a lower discriminative accuracy compared to other baseline methods, indicating the proposed method can generate data with less privacy risk. Discussion The proposed model utilizes a mixed diffusion process to generate realistic synthetic EHR samples that protect patient privacy. This method could be useful in tackling data availability issues in the field of healthcare by reducing barrier to EHR access and supporting research in machine learning for health. Conclusion The proposed diffusion model-based method can reliably and efficiently generate synthetic EHR time series, which facilitates the downstream medical data analysis. Our numerical results show the superiority of the proposed method over all other existing methods.

Funder

CS+

NSF

NIH

Publisher

Oxford University Press (OUP)

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3