Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset

Author:

Sáez Carlos1,Romero Nekane1,Conejero J Alberto2,García-Gómez Juan M1

Affiliation:

1. Biomedical Data Science Lab, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, España

2. Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de València, Valencia, Spain

Abstract

Abstract Objective The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source variability plays an important role. We showcase and discuss potential biases from data source variability for COVID-19 machine learning. Materials and Methods We used the publicly available nCov2019 dataset, including patient-level data from several countries. We aimed to the discovery and classification of severity subgroups using symptoms and comorbidities. Results Cases from the 2 countries with the highest prevalence were divided into separate subgroups with distinct severity manifestations. This variability can reduce the representativeness of training data with respect the model target populations and increase model complexity at risk of overfitting. Conclusions Data source variability is a potential contributor to bias in distributed research networks. We call for systematic assessment and reporting of data source variability and data quality in COVID-19 data sharing, as key information for reliable and generalizable machine learning.

Funder

Universitat Politècnica de València

FONDO SUPERA COVID-19 by CRUE-Santander Bank grant “Severity Subgroup Discovery and Classification on COVID-19 Real World Data

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3