Zero-shot learning to extract assessment criteria and medical services from the preventive healthcare guidelines using large language models

Author:

Luo Xiao12ORCID,Tahabi Fattah Muhammad1,Marc Tressica3,Haunert Laura Ann4,Storey Susan4ORCID

Affiliation:

1. Department of Management Science and Information Systems, Spears School of Business, Oklahoma State University , Stillwater, OK 74078, United States

2. Department of Biostatistics and Health Data Science, School of Medicine, Indiana University , Indianapolis, IN 46202, United States

3. Department of Computer Information Technology, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis , Indianapolis, IN 46202, United States

4. School of Nursing, Indiana University , Indianapolis, IN 46202, United States

Abstract

Abstract Objectives The integration of these preventive guidelines with Electronic Health Records (EHRs) systems, coupled with the generation of personalized preventive care recommendations, holds significant potential for improving healthcare outcomes. Our study investigates the feasibility of using Large Language Models (LLMs) to automate the assessment criteria and risk factors from the guidelines for future analysis against medical records in EHR. Materials and Methods We annotated the criteria, risk factors, and preventive medical services described in the adult guidelines published by United States Preventive Services Taskforce and evaluated 3 state-of-the-art LLMs on extracting information in these categories from the guidelines automatically. Results We included 24 guidelines in this study. The LLMs can automate the extraction of all criteria, risk factors, and medical services from 9 guidelines. All 3 LLMs perform well on extracting information regarding the demographic criteria or risk factors. Some LLMs perform better on extracting the social determinants of health, family history, and preventive counseling services than the others. Discussion While LLMs demonstrate the capability to handle lengthy preventive care guidelines, several challenges persist, including constraints related to the maximum length of input tokens and the tendency to generate content rather than adhering strictly to the original input. Moreover, the utilization of LLMs in real-world clinical settings necessitates careful ethical consideration. It is imperative that healthcare professionals meticulously validate the extracted information to mitigate biases, ensure completeness, and maintain accuracy. Conclusion We developed a data structure to store the annotated preventive guidelines and make it publicly available. Employing state-of-the-art LLMs to extract preventive care criteria, risk factors, and preventive care services paves the way for the future integration of these guidelines into the EHR.

Funder

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3