Toward automated assessment of health Web page quality using the DISCERN instrument

Author:

Allam Ahmed1,Schulz Peter J2,Krauthammer Michael3

Affiliation:

1. Department of Pathology, Yale University School of Medicine, New Haven, CT, USA

2. Institute of Communication and Health, Faculty of Communication Sciences, University of Lugano (Università della Svizzera Italiana), Lugano, Switzerland

3. Program for Computational Biology and Bioinformatics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA

Abstract

Background: As the Internet becomes the number one destination for obtaining health-related information, there is an increasing need to identify health Web pages that convey an accurate and current view of medical knowledge. In response, the research community has created multicriteria instruments for reliably assessing online medical information quality. One such instrument is DISCERN, which measures health Web page quality by assessing an array of features. In order to scale up use of the instrument, there is interest in automating the quality evaluation process by building machine learning (ML)-based DISCERN Web page classifiers. Objective: The paper addresses 2 key issues that are essential before constructing automated DISCERN classifiers: (1) generation of a robust DISCERN training corpus useful for training classification algorithms, and (2) assessment of the usefulness of the current DISCERN scoring schema as a metric for evaluating the performance of these algorithms. Methods: Using DISCERN, 272 Web pages discussing treatment options in breast cancer, arthritis, and depression were evaluated and rated by trained coders. First, different consensus models were compared to obtain a robust aggregated rating among the coders, suitable for a DISCERN ML training corpus. Second, a new DISCERN scoring criterion was proposed (features-based score) as an ML performance metric that is more reflective of the score distribution across different DISCERN quality criteria. Results: First, we found that a probabilistic consensus model applied to the DISCERN instrument was robust against noise (random ratings) and superior to other approaches for building a training corpus. Second, we found that the established DISCERN scoring schema (overall score) is ill-suited to measure ML performance for automated classifiers. Conclusion: Use of a probabilistic consensus model is advantageous for building a training corpus for the DISCERN instrument, and use of a features-based score is an appropriate ML metric for automated DISCERN classifiers. Availability: The code for the probabilistic consensus model is available at https://bitbucket.org/A_2/em_dawid/.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference39 articles.

1. Trust and sources of health information: the impact of the Internet and its implications for health care providers: findings from the first Health Information National Trends Survey;Hesse;Arch Intern Med

2. Surveys of physicians and electronic health information;Hesse;N Engl J Med,2010

3. Literature review on health information–seeking behaviour on the web: a health consumer and health professional perspective;Higgins,2011

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3