Spoken words as biomarkers: using machine learning to gain insight into communication as a predictor of anxiety

Author:

Demiris George1ORCID,Corey Magan Kristin L1,Parker Oliver Debra2,Washington Karla T2,Chadwick Chad3,Voigt Jeffrey D3,Brotherton Sam3,Naylor Mary D1

Affiliation:

1. School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Family Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA

3. Live Circle Inc, Ridgewood, New Jersey, USA

Abstract

Abstract Objective The goal of this study was to explore whether features of recorded and transcribed audio communication data extracted by machine learning algorithms can be used to train a classifier for anxiety. Materials and Methods We used a secondary data set generated by a clinical trial examining problem-solving therapy for hospice caregivers consisting of 140 transcripts of multiple, sequential conversations between an interviewer and a family caregiver along with standardized assessments of anxiety prior to each session; 98 of these transcripts (70%) served as the training set, holding the remaining 30% of the data for evaluation. Results A classifier for anxiety was developed relying on language-based features. An 86% precision, 78% recall, 81% accuracy, and 84% specificity were achieved with the use of the trained classifiers. High anxiety inflections were found among recently bereaved caregivers and were usually connected to issues related to transitioning out of the caregiving role. This analysis highlighted the impact of lowering anxiety by increasing reciprocity between interviewers and caregivers. Conclusion Verbal communication can provide a platform for machine learning tools to highlight and predict behavioral health indicators and trends.

Funder

National Institutes of Health

National Institute for Nursing Research

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3