Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach

Author:

Jacquemyn Xander12,Van den Eynde Jef12,Chinni Bhargava K1,Danford David M1,Kutty Shelby1ORCID,Manlhiot Cedric1ORCID

Affiliation:

1. Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University , Baltimore, MD 21282, United States

2. Department of Cardiovascular Sciences, KU Leuven & Congenital and Structural Cardiology, UZ Leuven , Leuven, 3000, Belgium

Abstract

Abstract Importance and objectives The current medical paradigm of evidence-based medicine relies on clinical guidelines derived from randomized clinical trials (RCTs), but these guidelines often overlook individual variations in treatment effects. Approaches have been proposed to develop models predicting the effects of individualized management, such as predictive allocation, individualizing treatment allocation. It is currently unknown whether widespread implementation of predictive allocation could result in better population-level outcomes over guideline-based therapy. We sought to simulate the potential effect of predictive allocation using data from previously conducted RCTs. Methods and results Data from 3 RCTs (positive trial, negative trial, trial stopped for futility) in pediatric cardiology were used in a computational simulation study to quantify the potential benefits of a personalized approach based on predictive allocation. Outcomes were compared when using a universal approach vs predictive allocation where each patient was allocated to the treatment associated with the lowest predicted probability of negative outcome. Compared to results from RCTs, predictive allocation yielded absolute risk reductions of 13.8% (95% confidence interval [CI] −1.9 to 29.5), 13.9% (95% CI 4.5-23.2), and 15.6% (95% CI 1.5-29.6), respectively, corresponding to a number needed to treat of 7.3, 7.2, and 6.4. The net benefit of predictive allocation was directly proportional to the performance of the prediction models and disappeared as model performance degraded below an area under the curve of 0.55. Discussion These findings highlight that predictive allocation could result in improved group-level outcomes, particularly when highly predictive models are available. These findings will need to be confirmed in simulations of other trials with varying conditions and eventually in RCTs of predictive vs guideline-based treatment allocation.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Belgian American Educational Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3