Evaluating resources composing the PheMAP knowledge base to enhance high-throughput phenotyping

Author:

Wan Nicholas C1,Yaqoob Ali A2,Ong Henry H2,Zhao Juan2,Wei Wei-Qi2

Affiliation:

1. Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee, USA

2. Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee, USA

Abstract

AbstractObjectiveA previous study, PheMAP, combined independent, online resources to enable high-throughput phenotyping (HTP) using electronic health records (EHRs). However, online resources offer distinct quality descriptions of diseases which may affect phenotyping performance. We aimed to evaluate the phenotyping performance of single resource-based PheMAPs and investigate an optimized strategy for HTP.Materials and MethodsWe compared how each resource produced top-ranked concept unique identifiers (CUIs) by term frequency—inverse document frequency with Jaccard matrices comparing single resources and the original PheMAP. We correlated top-ranked concepts from each resource to features used in established Phenotype KnowledgeBase (PheKB) algorithms for hypothyroidism, type II diabetes mellitus (T2DM), and dementias. Using resources separately, we calculated multiple phenotype risk scores for individuals from Vanderbilt University Medical Center’s BioVU DNA Biobank and compared phenotyping performance against rule-based eMERGE algorithms. Lastly, we implemented an ensemble strategy which classified patient case/control status based upon PheMAP resource agreement.ResultsJaccard similarity matrices indicate that the similarity of CUIs comprising single resource-based PheMAPs varies. Single resource-based PheMAPs generated from MedlinePlus and MedicineNet outperformed others but only encompass 81.6% of overall disease phenotypes. We propose the PheMAP-Ensemble which provides higher average accuracy and precision than the combined average accuracy and precision of single resource-based PheMAPs. While offering complete phenotype coverage, PheMAP-Ensemble significantly increases phenotyping recall compared to the original iteration.ConclusionsResources comprising the PheMAP produce different phenotyping performance when implemented individually. The ensemble method significantly improves the quality of PheMAP by fully utilizing dissimilar resources to capture accurate phenotyping data from EHRs.

Funder

National Institutes of Health

Vanderbilt University Medical Center

National Center for Advancing Translational Science

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3