Parameterizing time in electronic health record studies

Author:

Hripcsak George12,Albers David J1,Perotte Adler1

Affiliation:

1. Department of Biomedical Informatics, Columbia University Medical Center, New York, USA

2. Medical Informatics Services, NewYork-Presbyterian Hospital, New York, USA

Abstract

Abstract Background Fields like nonlinear physics offer methods for analyzing time series, but many methods require that the time series be stationary—no change in properties over time. Objective Medicine is far from stationary, but the challenge may be able to be ameliorated by reparameterizing time because clinicians tend to measure patients more frequently when they are ill and are more likely to vary. Methods We compared time parameterizations, measuring variability of rate of change and magnitude of change, and looking for homogeneity of bins of temporal separation between pairs of time points. We studied four common laboratory tests drawn from 25 years of electronic health records on 4 million patients. Results We found that sequence time—that is, simply counting the number of measurements from some start—produced more stationary time series, better explained the variation in values, and had more homogeneous bins than either traditional clock time or a recently proposed intermediate parameterization. Sequence time produced more accurate predictions in a single Gaussian process model experiment. Conclusions Of the three parameterizations, sequence time appeared to produce the most stationary series, possibly because clinicians adjust their sampling to the acuity of the patient. Parameterizing by sequence time may be applicable to association and clustering experiments on electronic health record data. A limitation of this study is that laboratory data were derived from only one institution. Sequence time appears to be an important potential parameterization.

Funder

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3