Clinical decision support system, using expert consensus-derived logic and natural language processing, decreased sedation-type order errors for patients undergoing endoscopy

Author:

Shen Lin12ORCID,Wright Adam234,Lee Linda S12,Jajoo Kunal12,Nayor Jennifer125,Landman Adam26

Affiliation:

1. Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Boston, Massachusetts, USA

2. Harvard Medical School, Boston, Massachusetts, USA

3. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA

4. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA

5. Department of Gastroenterology, Emerson Hospital, Concord, Massachusetts, USA

6. Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Abstract

Abstract Objective Determination of appropriate endoscopy sedation strategy is an important preprocedural consideration. To address manual workflow gaps that lead to sedation-type order errors at our institution, we designed and implemented a clinical decision support system (CDSS) to review orders for patients undergoing outpatient endoscopy. Materials and Methods The CDSS was developed and implemented by an expert panel using an agile approach. The CDSS queried patient-specific historical endoscopy records and applied expert consensus-derived logic and natural language processing to identify possible sedation order errors for human review. A retrospective analysis was conducted to evaluate impact, comparing 4-month pre-pilot and 12-month pilot periods. Results 22 755 endoscopy cases were included (pre-pilot 6434 cases, pilot 16 321 cases). The CDSS decreased the sedation-type order error rate on day of endoscopy (pre-pilot 0.39%, pilot 0.037%, Odds Ratio = 0.094, P-value < 1e-8). There was no difference in background prevalence of erroneous orders (pre-pilot 0.39%, pilot 0.34%, P = .54). Discussion At our institution, low prevalence and high volume of cases prevented routine manual review to verify sedation order appropriateness. Using a cohort-enrichment strategy, a CDSS was able to reduce number of chart reviews needed per sedation-order error from 296.7 to 3.5, allowing for integration into the existing workflow to intercept rare but important ordering errors. Conclusion A workflow-integrated CDSS with expert consensus-derived logic rules and natural language processing significantly reduced endoscopy sedation-type order errors on day of endoscopy at our institution.

Funder

NIH

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3