Remote symptom monitoring integrated into electronic health records: A systematic review

Author:

Gandrup Julie1,Ali Syed Mustafa1,McBeth John12,van der Veer Sabine N3,Dixon William G124

Affiliation:

1. Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK

2. NIHR Greater Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK

3. Centre for Health Informatics, Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK

4. Rheumatology Department, Salford Royal NHS Foundation Trust, Salford, UK

Abstract

Abstract Objective People with long-term conditions require serial clinical assessments. Digital patient-reported symptoms collected between visits can inform these, especially if integrated into electronic health records (EHRs) and clinical workflows. This systematic review identified and summarized EHR-integrated systems to remotely collect patient-reported symptoms and examined their anticipated and realized benefits in long-term conditions. Materials and Methods We searched Medline, Web of Science, and Embase. Inclusion criteria were symptom reporting systems in adults with long-term conditions; data integrated into the EHR; data collection outside of clinic; data used in clinical care. We synthesized data thematically. Benefits were assessed against a list of outcome indicators. We critically appraised studies using the Mixed Methods Appraisal Tool. Results We included 12 studies representing 10 systems. Seven were in oncology. Systems were technically and functionally heterogeneous, with the majority being fully integrated (data viewable in the EHR). Half of the systems enabled regular symptom tracking between visits. We identified 3 symptom report-guided clinical workflows: Consultation-only (data used during consultation, n = 5), alert-based (real-time alerts for providers, n = 4) and patient-initiated visits (n = 1). Few author-described anticipated benefits, primarily to improve communication and resultant health outcomes, were realized based on the study results, and were only supported by evidence from early-stage qualitative studies. Studies were primarily feasibility and pilot studies of acceptable quality. Discussion and Conclusions EHR-integrated remote symptom monitoring is possible, but there are few published efforts to inform development of these systems. Currently there is limited evidence that this improves care and outcomes, warranting future robust, quantitative studies of efficacy and effectiveness.

Funder

Centre for Epidemiology Versus Arthritis

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3