Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis

Author:

Mei Xueting12,Middleton Kevin2,Shim Dongsub1,Wan Qianqian1,Xu Liangcheng2,Ma Yu-Heng Vivian2,Devadas Deepika1,Walji Noosheen1,Wang Liyun3,Young Edmond W K12,You Lidan12

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

2. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada

3. Department of Mechanical Engineering, University of Delaware

Abstract

AbstractBone metastasis is a common, yet serious, complication of breast cancer. Breast cancer cells that extravasate from blood vessels to the bone devastate bone quality by interacting with bone cells and disrupting the bone remodeling balance. Although exercise is often suggested as a cancer intervention strategy and mechanical loading during exercise is known to regulate bone remodeling, its role in preventing bone metastasis remains unknown. We developed a novel in vitro microfluidic tissue model to investigate the role of osteocytes in the mechanical regulation of breast cancer bone metastasis. Metastatic MDA-MB-231 breast cancer cells were cultured inside a 3D microfluidic lumen lined with human umbilical vein endothelial cells (HUVECs), which is adjacent to a channel seeded with osteocyte-like MLO-Y4 cells. Physiologically relevant oscillatory fluid flow (OFF) (1 Pa, 1 Hz) was applied to mechanically stimulate the osteocytes. Hydrogel-filled side channels in-between the two channels allowed real-time, bi-directional cellular signaling and cancer cell extravasation over 3 days. The applied OFF was capable of inducing intracellular calcium responses in osteocytes (82.3% cells responding with a 3.71 fold increase average magnitude). Both extravasation distance and percentage of extravasated side-channels were significantly reduced with mechanically stimulated osteocytes (32.4% and 53.5% of control, respectively) compared to static osteocytes (102.1% and 107.3% of control, respectively). This is the first microfluidic device that has successfully integrated stimulatory bone fluid flow, and demonstrated that mechanically stimulated osteocytes reduced breast cancer extravasation. Future work with this platform will determine the specific mechanisms involved in osteocyte mechanoregulation of breast cancer bone metastasis, as well as other types of cancer metastasis and diseases.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry,Biophysics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3