Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression

Author:

Bi Ye1,Shirure Venktesh S2,Liu Ruiyang34,Cunningham Cassandra1,Ding Li34,Meacham J Mark5,Goedegebuure S Peter16,George Steven C2,Fields Ryan C16

Affiliation:

1. Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA

2. Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA

3. Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA

4. McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA

5. Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA

6. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA

Abstract

Abstract Tumor-infiltrating leukocytes, in particular macrophages, play an important role in tumor behavior and clinical outcome. The spectrum of macrophage subtypes ranges from antitumor ‘M1’-type to protumor ‘M2’-type macrophages. Tumor-associated macrophages (TAMs) typically display phenotypic features of both M1 and M2, and the population distribution is thought to be dynamic and evolves as the tumor progresses. However, our understanding of how TAMs impact the tumor microenvironment remains limited by the lack of appropriate 3D in vitro models that can capture cell–cell dynamics at high spatial and temporal resolution. Using our recently developed microphysiological ‘tumor-on-a-chip’ (TOC) device, we present here our findings on the impact of defined macrophage subsets on tumor behavior. The TOC device design contains three adjacent and connected chambers in which both the upper and lower chambers are loaded with tumor cells, whereas the central chamber contains a dynamic, perfused, living microvascular network. Introduction of human pancreatic or colorectal cancer cells together with M1-polarized macrophages significantly inhibited tumor growth and tumor-induced angiogenesis. Protein analysis and antibody-based neutralization studies confirmed that these effects were mediated through production of C-X-C motif chemokines (CXCL9), CXCL10 and CXCL11. By contrast, M2-macrophages mediated increased tumor cell migration into the vascularized chamber and did not inhibit tumor growth or angiogenesis. In fact, single-cell RNA sequencing showed that M2 macrophages further segregated endothelial cells into two distinct subsets, corresponding to static cells in vessels versus active cells involved in angiogenesis. The impact of M2 macrophages was mediated mostly by production of matrix metalloproteinase 7 and angiopoietin 2. In summary, our data demonstrate the utility of the TOC device to mechanistically probe biological questions in a 3D in vitro microenvironment.

Funder

National Institutes of Health’s NCATS Clinical and Translational Science Award

National Cancer Institute Cancer Center Support Grant

National Institutes of Health

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Biochemistry,Biophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3