Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota

Author:

Yang Min12,Mao Zhengyu1,Jiang Xuemei1,Cozannet Pierre3,Che Lianqiang1,Xu Shengyu1ORCID,Lin Yan1,Fang Zhengfeng1,Feng Bin1ORCID,Wang Jianping1,Li Jian1,Wu De1ORCID,Zhuo Yong1

Affiliation:

1. Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China

2. Chengdu Agricultural College, Wenjiang, Chengdu 611130, People’s Republic of China

3. ADISSEO France SAS, Rue Marcel Lingot, Commentry, France

Abstract

Abstract We investigated the effects of dietary fiber (DF) supplementation in normal or low crude protein (CP) diets on reproductive performance and nitrogen (N) utilization in primiparous gilts. In total, 77 Landrace × Yorkshire pregnant gilts were randomly allocated to four dietary treatments in a 2 × 2 factorial design. The groups comprised 1) equal intake of normal CP (12.82% and 0.61% total lysine), 2) low CP (LP) (10.53% and 0.61% total lysine), and 3) with or 4) without DF supplementation (cellulose, inulin, and pectin in a 34:10:1 ratio). A low-protein diet during gestation significantly reduced daily weight gain from days 91 to 110 of pregnancy (−162.5 g/d, P = 0.004). From N balance trials conducted at days 35 to 38, 65 to 68, and 95 to 98 of pregnancy, DF addition increased fecal N excretion at days 65 to 68 (+24.1%) and 95 to 98 (+13.8%) of pregnancy (P < 0.05) but reduced urinary N excretion (P < 0.05), resulting in greater N retention at each gestational stage. DF increased fecal microbial protein levels and excretion during gestation. An LP diet also reduced urinary N excretion at different gestational stages. An in vitro fermentation trial on culture media with nonprotein N urea and ammonium bicarbonate (NH4HCO3) as the only N sources revealed that microbiota derived from feces of gestating gilts fed the high DF diet exhibited a greater capacity to convert nonprotein N to microbial protein. Microbial fecal diversity, as measured by 16S rRNA sequencing, revealed significant changes from DF but not CP diets. Gilts fed an LP diet had a higher number of stillbirths (+0.83 per litter, P = 0.046) and a lower piglet birth weight (1.52 vs. 1.37 kg, P = 0.006), regardless of DF levels. Collectively, DF supplementation to gestation diets shifted N excretion from urine to feces in the form of microbial protein, suggesting that the microbiota had a putative role in controlling N utilization from DF. Additionally, a low-protein diet during gestation negatively affected the litter performance of gilts.

Funder

SAU-Adisseo Center of Research on Nutrition and Health

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3