Affiliation:
1. College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
2. Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130118, China
Abstract
Abstract
Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine (Gly) can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which Gly affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether Gly could reverse the mitochondrial dysfunction caused by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, which was confirmed by decreased mitochondrial membrane potential (ΔΨm) and the expression of mitochondrial function-related genes PGC-1α, and increased reactiveoxygenspecies (ROS) levelsand the expression of apoptosis-associated genes Bax, Caspase-3, and Cyto C.More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with Gly significantly ameliorated mitochondrial dysfunction, oxidative stress, and apoptosis, and Gly also regulated [Ca2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes.Taken together, our results indicate that Gly has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.
Funder
National Natural Science Foundation of China
Jilin Scientific and Technological Development Program
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献